National Compact Stellarator Program

J. F. Lyon, ORNL representing the US Compact Stellarator Community

DOE Budget Planning Meeting
Gaithersburg, MD March 15, 2005

Main Topics

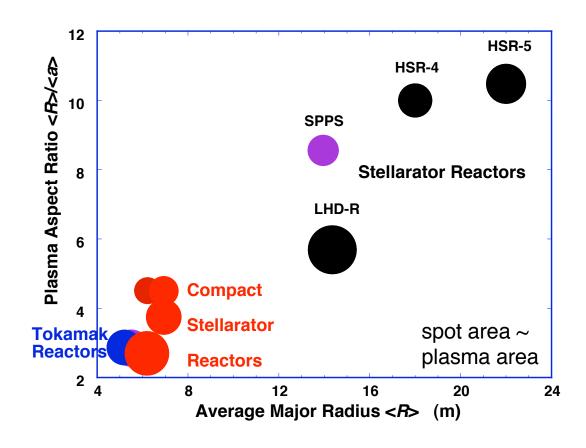
- US compact stellarator program logic
- Experimental facilities and programs
- Contributions to FESAC's priority questions
- Budgets and near-term objectives

Programmatic Approach

- US compact stellarator program uniquely integrates three features in experiments
 - compactness (low aspect ratio)
 - quasi-symmetry (low ripple and flow damping)
 - good flux surfaces (finite, low plasma current)
- Goal -- steady-state disruption-immune toroidal plasmas with performance comparable to, or better than, that of tokamaks
- Possible because recent advances in 3-D theory and computation allow design of optimized configurations
- Motivation -- excellent results from larger aspect ratio stellarators without benefits of quasi-symmetry

Compact Stellarators Offer Solutions to Steady-State Burning-Plasma Challenges

- Steady-state compatible, quiescent high-beta plasmas already demonstrated without disruptions.
 - provides alternate solution to high-bootstrap-fraction Advanced Tokamak
 - allows ITER to lead to the next step (DEMO), even if disruptionmitigated, steady-state, high-bootstrap-current operation is not fully attained
- Soft operating limits, not disruptive. Allows higher density operation
 - allows low temperature edge, should ease divertor design.
 - decreases drive for fast ion instabilities
 - provides alternative solutions for ITER challenges
- Orbit physics and turbulent transport physics of quasisymmetric stellarators is directly connected to tokamak understanding. Thus, contributes to, and benefits from, ITER understanding.


Energy Vision: a More Attractive Reactor

- A steady-state toroidal reactor with
 - No disruptions
 - No near-plasma conducting structures or active feedback control of instabilities
 - No current drive (minimal recirculating power)
 - High power density (~3 MW/m²)
- Likely configuration features (based on present knowledge)
 - Rotational transform from a combination of bootstrap and externally-generated (how much of each?)
 - 3-D plasma shaping to stabilize limiting instabilities (how strong?)
 - Quasi-symmetric to reduce helical ripple transport, alpha-particle losses, flow damping (how low must ripple be?)
 - Power and particle exhaust via a divertor (what topology?)
 - R/[a]~ 4 (how low?) and [] > 4% (how high?)
- Design involves tradeoffs -- need experimental data to quantify mix and assess attractiveness

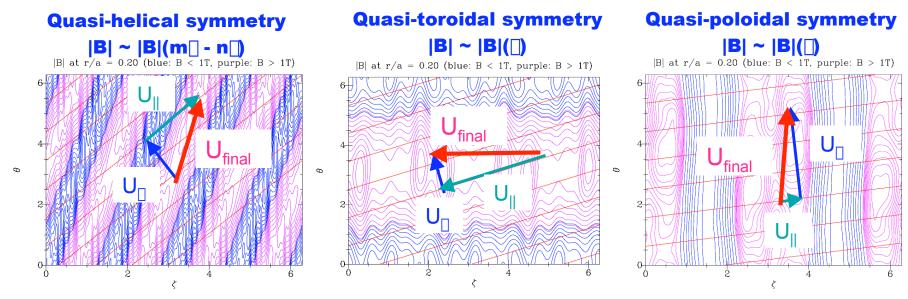
Reactor Concept Improvement

- Stellarator advantages
 - inherent steady-state capability with no disruptions
 - fully ignited operation with no power input to the plasma
 - no need for rotation drive or feedback control of instabilities

 Compact stellarator reactors can be comparable to tokamaks in compactness

The US Compact Stellarator Program

The components of the integrated national compact stellarator (CS) program

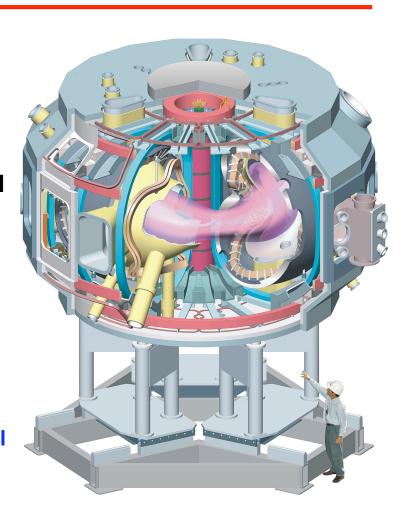

- HSX and CTH (existing university experiments)
- NCSX (under construction)
- QPS (R&D and prototyping phase)
- Theory and modeling
- International collaborations, ARIES reactor study

address important US program issues using CS's unique features: quasi-symmetry and configuration flexibility

- to advance toroidal confinement understanding
 - MHD stability; disruption immunity without instability feedback
 - reduced neoclassical and anomalous transport
 - natural divertor for particle & power handling
- for concept improvement
 - quiescent steady state, without current or rotation drive
 - factor 2-4 lower aspect ratio than conventional stellarators
 - smaller reactor embodiment

Compact Stellarator Experiments Optimize Confinement Using Quasi-Symmetry

 Quasi-symmetry: small IBI variation and low flow damping in the symmetry direction, which allows large flow shear

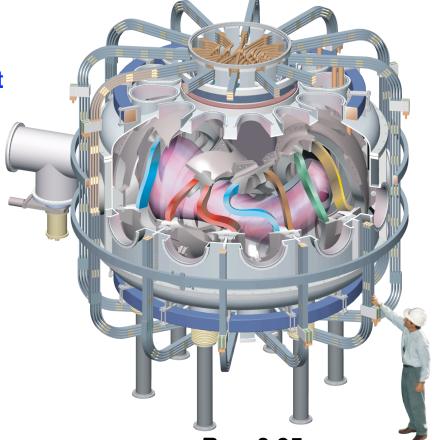

- Low effective field ripple for low neoclassical losses
- No/low plasma current for good flux surfaces at both low and high beta

3-D Optimized Experiments Designed With Particular Magnetic Configuration Features

- NCSX -- stellarator-tokamak hybrid with quasiaxisymmetry
- QPS -- stellarator-mirror hybrid with quasi-poloidal symmetry
- HSX -- quasi-helical symmetry and low neoclassical transport
- CTH -- equilibrium and stability with plasma current at low R/a

NCSX Explores Advantages of Quasi-Axisymmetry

- < R > = 1.42 m, < a > = 0.33 m (0.37 m max)< R > / < a > = 4.4, wide range of configurations
- B = 2 T, P = 3-12 MW
- Operation in 2009
- Objectives: integrated demonstration and understanding of
 - high-beta disruption-free operation with bootstrap current and external transform
 - beta limits and limiting mechanisms in a low-R/a current-carrying stellarator
 - reduction of neoclassical transport by quasi-axisymmetric design
 - confinement scaling and reduction of anomalous transport by flow-shear control
 - islands and stabilization of neoclassical tearing modes by magnetic shear
 - power and particle exhaust compatibility with good core performance



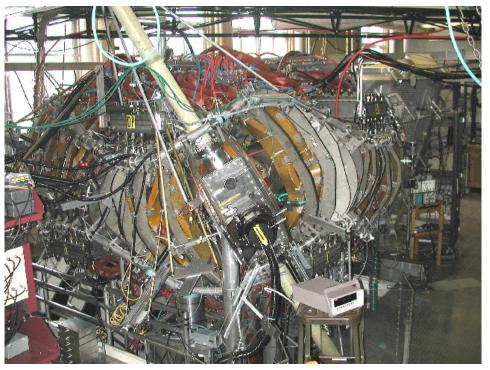
QPS Explores Quasi-Poloidal Symmetry

 Will study effect of low R/a and quasi-poloidal symmetry on

 reduction in neoclassical transport (low effective ripple)

- reduction in anomalous transport (large poloidal flows, E_r)
- equilibrium robustness with strong toroidal/helical coupling
- healing magnetic islands
- ─
 limits and instability character
- edge divertor topology
- Extends stellarator database to lowest aspect ratio
- 9 independent coil current sets; can vary
 - quasi-poloidal symmetry by a factor of 9
 - poloidal flow damping by a factor of 25
 - neoclassical transport by a factor of 20
 - stellarator/tokamak shear
 - trapped particle fraction

- < R > = 0.95 m
- < a > = 0.3-0.4 m
- < R > / < a > = 2.7
- B = 1 T, P = 2-4 MW
- 0.15-T \square B, $I_p = 50 \text{ kA}$
- Operation in 2010


The HSX Program: World's First Experimental Test of Quasi-symmetry

Mission: Explore Improvement of Neoclassical Transport in Stellarators

Quasi-helical stellarators have high effective transform, $Q_{eff} \sim 3 \ (q \sim 1/3)$

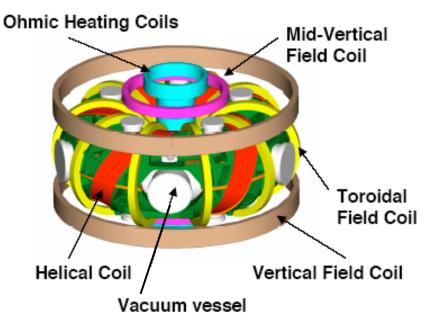
- Reduced particle drift
- Small neoclassical transport
- Low plasma currents; robust magnetic surfaces

- First experimental verification of reduced flow damping with quasisymmetry
- Confirmation of high effective transform and reduction of direct loss orbits
- Fast particle effects on MHD modes observed due to improved confinement
- Observation of reduced neoclassical thermodiffusion
- Experimental verification of 3-D neutral code DEGAS

CTH: Compact Toroidal Hybrid

Addresses equilibrium & stability in stellarators with current

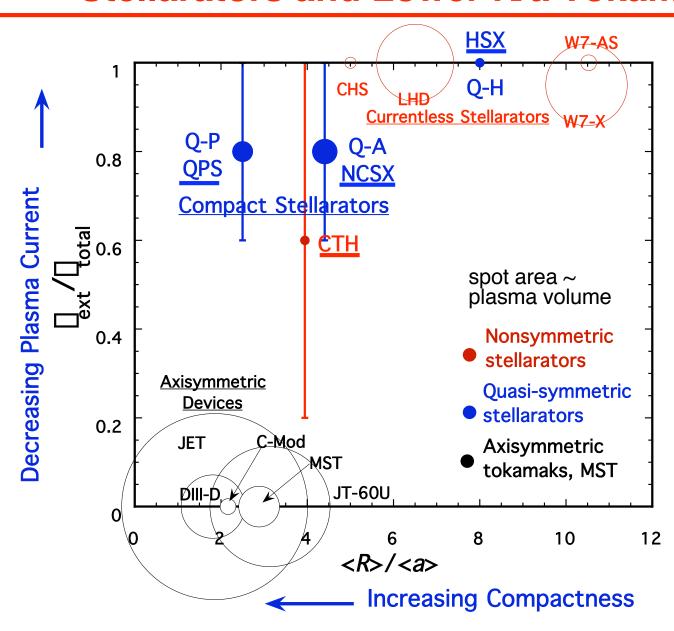
Objectives:


- Reconstruct 3-D plasma equilibrium with V3FIT code & magnetic measurements
- Determine stable operating scenarios and disruption behavior in current-carrying plasmas
- Control static islands in low-aspect ratio helical plasmas

Addresses key physics areas:

- Physics underlying external stability control
- Understanding current-driven instabilities in stellarators
- Limits of disruption-free operation

Parameters:


- $R = 0.75 \text{ m}, \ a_{\text{Plasma}} \le 0.18 \text{ m}, \ R/a \ge 4$
- B = 0.5T, $I_p = 50$ kA, ($\square / \sim 0.5$), $P \sim 120$ kW
- First plasma Feb. 22, 2005 (ECH at 0.1T)

CTH in late January, prior to 1st plasma

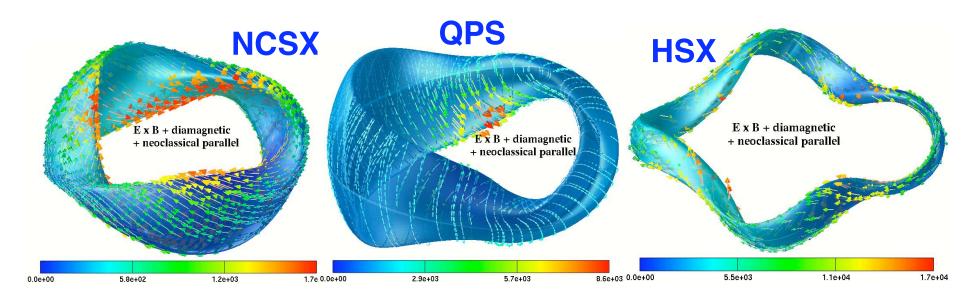
Compact Stellarators Bridge between Currentless Stellarators and Lower *R/a* Tokamaks

Compact Stellarator Program Contributes Unique Information on FESAC's High Priority Scientific Questions

- 1 How does magnetic field structure impact fusion plasma confinement?
- 2 What limits the maximum pressure that can be achieved in laboratory plasmas?
- 3 How much external control versus self-organization will a fusion plasma require?
- 4 How does turbulence cause heat, particles, and momentum to escape from plasmas?
- 5 How are electromagnetic fields and mass flows generated in plasmas?
- 9 How to interface with room temperature surroundings?
- Advantage is wide range of configuration properties

1. How Does Magnetic Field Structure Impact Fusion Plasma Confinement?

Understanding the role of plasma shaping on:

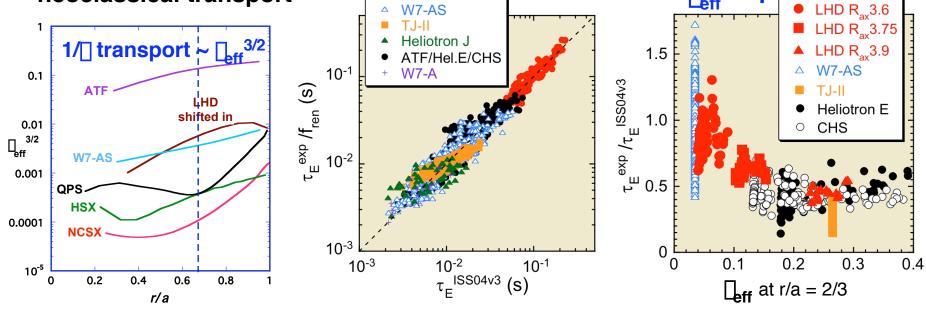

- a plasma confinement
- **b** effects of self-generated currents and flows
- **C** effects of magnetic structure within the plasma

Wide variation of configuration properties is possible in compact stellarators for transport & stability studies

- 3-D shaping and effective magnetic field ripple
- trapped particle fraction
- amount and sign of shear
- type and degree of quasi-symmetry
- degree of viscous damping and flow shear
- ambipolar electric field and internal transport barriers
- magnetic island size and ergodic regions
- internal vs. external transform
- + integrated effort in experiment, modeling, and theory

Quasi-Symmetry Determines Flow Magnitude and Direction

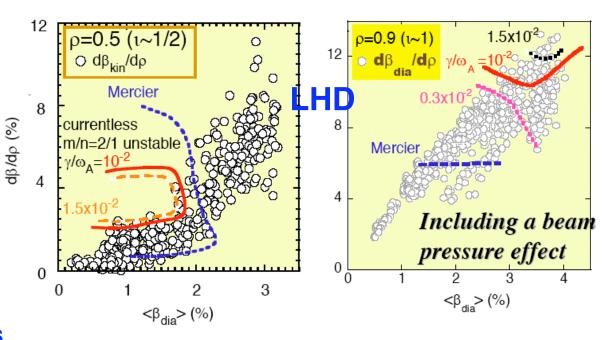
- Low flow damping in symmetry direction allows large flows that can shear apart turbulent eddies and reduce anomalous transport
- Corresponding electric fields and their effect on flows can also affect neoclassical and anomalous transport


Can vary damping through external control

Anomalous Transport May Depend on

LHD

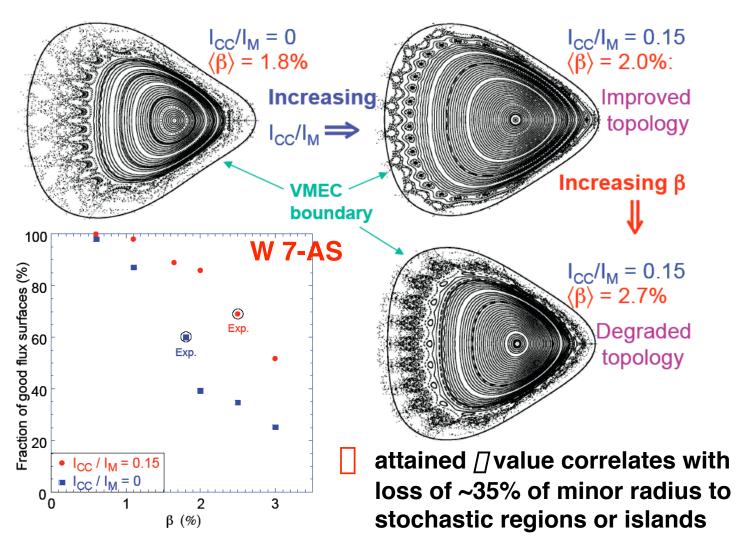
 The large reductions in effective helical ripple □_{eff} in compact stellarators is expected to greatly reduce neoclassical transport


Stellarator database suggests that lower effective ripple may also reduce anomalous transport -- electric field effect?

- Provides insight for other configurations
 - might be tied to flow damping physics
 - ____ can be varied over a very wide range in a single experiment

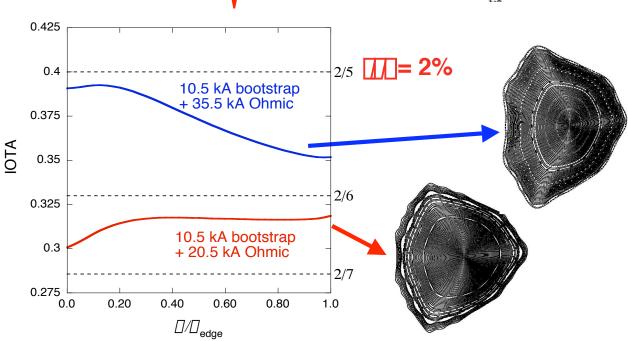
2. What Limits the Maximum Pressure That Can Be Achieved in Laboratory Plasmas?

- Current data indicates that ☐ in stellarators is not limited by instabilities
 - quiescent plasmas are routinely observed well above linear stability thresholds



- Character of MHD instabilities is different in stellarators
 - e.g., ballooning instability occurs simultaneously on a surface in tokamaks but occurs progressively line-by-line with different growth rates as ☐ increases in stellarators
- Provides new insight into non-linear character of MHD instabilities

Observed [] Limits May Be Due to Equilibrium Limits


Equilibrium is limited by the onset of magnetic stochasticity:

☐ Compact stellarators designed to maintain good surfaces at high ☐

Magnetic Islands Can Be Controlled

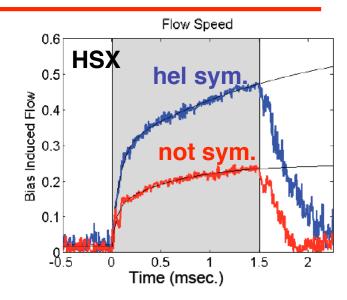
- Compact stellarators are designed to have good flux surfaces
- Self-stabilizing effect of a plasma current (for w/a < 0.3), related to tearing modes in tokamaks
- Bootstrap and Ohmic current tailoring of the q profile to avoid low-order resonances
- Can control with external coils

W(m)

0.1

(b) Island Width

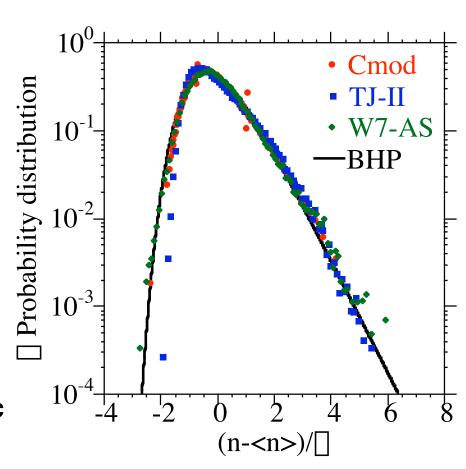
Vacuum Width


LHD

 $(\beta=0.77\% \text{ plasma})$

0.2

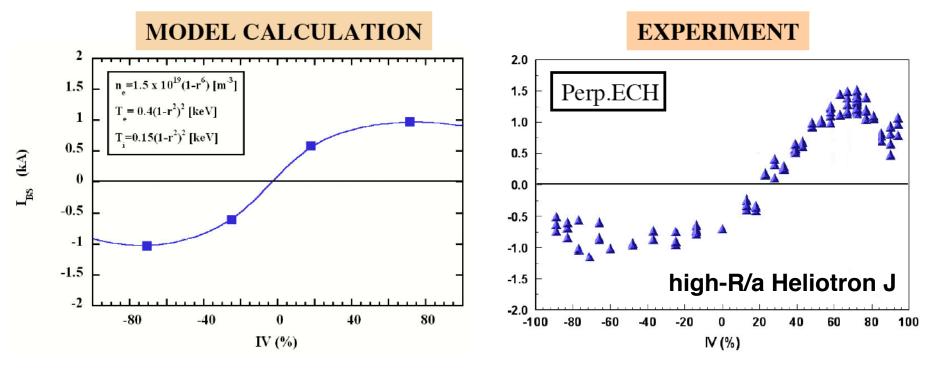
3. How Much External Control Versus Selforganization Will a Fusion Plasma Require?


- a Understanding the use of dominant external control (e.g. externally generated confining magnetic fields or flows)
- Understanding and controlling pressuregradient-driven plasma currents and flow self organization

- W 7-AS shows that externally controlled plasmas allow quiescent, long-lasting, non-disruptive plasmas at high beta, even without compact stellarator optimization
- LHD shows that can control electron-root to ion-root transition and internal transport barriers
- The field can be tailored to control current-driven and pressure-driven instabilities
- External control reduces self-organization and nonlinearity in equilibrium and stability, avoids kink instabilities

4. How Does Turbulence Cause Heat, Particles & Momentum to Escape From Plasmas?

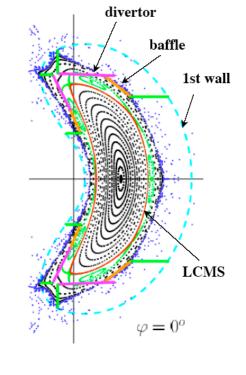
- The functional form of the normalized probability distribution of edge fluctuations in different toroidal devices is very similar
- This behavior is seen in other systems close to a critical point, implying correlations
- Does the behavior of the edge layer in toroidal plasmas belong to this universal class?
- Does it differ for quasi-symmetric compact stellarators?
- What is the physics behind this?

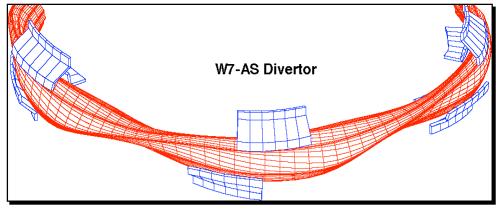


Differences in Magnetic Structure Influence Core Turbulence and Confinement

- Low flow damping with quasi-symmetry allows zonal flow stabilization
- Reversed magnetic shear can stabilize trapped particle instabilities, increase damping of ITG modes
- Internal islands can produce E x B shearing, generating transport barriers

5. How Are Electromagnetic Fields and Mass Flows Generated in Plasmas?


 Examples: E x B flows (discussed earlier), control/reversal of bootstrap currents



 The type of quasi-symmetry and low aspect ratio affect the magnitude of the bootstrap current

9. How to Interface to Room Temperature Surroundings?

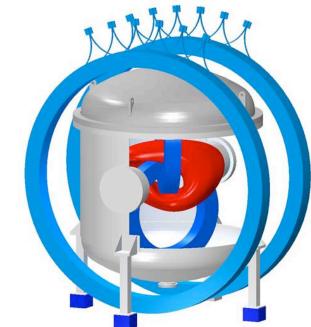
- 3-D shaping flexibility allows different edge strategies:
 - diverted field lines, island divertors, ergodic edges, or combinations
- W 7-AS and LHD divertors have successfully demonstrated density and impurity control, including high ☐ plasmas
 - need to demonstrate in compact stellarators
- Good or enhanced confinement obtained at very high density in stellarators
 - combined with lack of need for current drive allows low temperature edge plasma, easing divertor design

3-D Geometry and Low Aspect Ratio Drive Theory Development

Plasma equilibrium

- toroidal and poloidal variation are strongly coupled -- need to improve representation, convergence more demanding
- need to improve modeling of plasma response

MHD stability


- need to understand observed nonlinear mode saturation
- interpretation of high-n ballooning stability differs because calculations don't apply to entire surface as in a tokamak

Transport

- need nonlinear simulations of expected turbulent transport
- need to include magnetic islands and 2-D variations within a flux surface

Compact Stellarators Impact Other Areas

- Confinement of non-neutral and e⁺/e⁻ plasmas (Columbia Non-Neutral Torus)
 - simple coils and low-R/a
 plasma designed with tools
 developed in compact
 stellarator program

- 3-D nature of space plasmas
 - uses theoretical methods for treating magnetic problems (solar flares, galaxy structure)

HSX Budgets and Milestones

- FY 2006 -- \$1,475k
 - full 200 kW operation and magnetic field of 1 T
- FY 2007 -- \$1,475k (reduce staff by 1.5 to maintain grad. students)
 - increase ECH power to 400 kW
 - measure thermal conductivity by heat pulse propagation
 - initial electric field measurements
 - eliminate loading test for HHFW at low power
- 10% decrement in FY 2007 -- \$1,328k
 - delay electric field and core turbulence measurements
 - another 1 FTE reduction in staff
- Full-use budget in FY 07 -- \$1,949k (supported by 2004 review)
 - clear demonstration of differences in neoclassical transport with electric field
 - ICRF program, ion heating, higher density operation, more flexibility, NCSX support
 - core turbulence studies

CTH Budgets and Milestones

- FY 2006 -- \$450K
 - tests of V3FIT with data from external magnetic diagnostics
 - initial stability and disruption characterization w/SX arrays
- FY 2007 -- \$450K (delay/defer post-doc hire; maintain 3 grad. stud.)
 - implement advanced 3-D reconstruction with internal B measurement from polarimeter/interferometer
- 10% decrement -- \$405K (eliminate post-doc & 1 grad. student)
 - delay quantitative MHD instability and disruption studies
 - delay polarimetry results
 - eliminate plans for ICRF for flexible range of operation
- 10% increment -- \$500K in FY 2007
 - restore a grad. student
 - restore implementation of ICRF heating system & utilization of polarimetry

QPS Budgets and Milestones

- FY 2006 -- \$920k (vs \$1433k in FY 2005), ORNL + PPPL
 - finish machining modular coil winding form
 - wind full-size R&D modular coil with cable conductor
- FY 2007 -- \$920k, ORNL + PPPL
 - complete vacuum canning and potting the R&D coil
 - test full-size R&D modular coil & measure current center
- 10% decrement -- \$828k, ORNL + PPPL
 - delay R&D coil tests and current center measurements to FY 08
 - reduce Univ. Tenn. support
- Full use budget -- \$5.1 M (from CD-1 approval documentation)
 - complete prerequisites for CD-2 milestone
 - complete Final Design Reviews for modular coil winding forms and vacuum vessel
 - complete prerequisites for CD-3 milestone for procurement and fabrication of components
 - complete design needed for production contract for vacuum vessel

SUMMARY

- The components of the integrated national compact stellarator program are designed and coordinated to address important US program issues (FESAC)
- Unique features: quasi-symmetry, good flux surface with configuration flexibility, and compactness
 - to advance toroidal confinement understanding
 - for concept improvement
- Complements larger tokamak and international stellarator programs and aims at an improved reactor vision